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The theory of standing localized modes in discrete nonlinear lattices is presented. We start from
a rather general model describing a chain of particles subjected to an external (on-site) potential
with cubic and quartic nonlinearities (the so-called discrete Klein-Gordon model), and, using the
approximation based on the discrete nonlinear Schrodinger equation, derive a system of two coupled
nonlinear equations for slowly varying envelopes of two counterpropagating waves of the same fre-
quency. We show that spatially localized modes exist in the frequency—wave number domain where
the lattice displays modulational instability; two families of localized modes are found for this case
as separatrix solutions of the effective equations for the wave envelopes. When the nonlinear plane
wave in the lattice is stable to small modulations of its amplitude, nonlinear localized modes appear
as dark solitons associated with the so-called extended modulational instability. These localized
modes may be treated as domain walls or kinks connecting two standing plane-wave modes of the
similar structure. We investigate analytically and numerically the special family of such localized
solutions that, in the vicinity of the zero-dispersion point, cover exactly the case of the so-called
self-induced gap solitons recently introduced by Kivshar [Phys. Rev. Lett. 70, 3055 (1993)]. Ap-
plication of the theory to the case of parametrically driven damped lattices is also briefly discussed,
and it is mentioned that some of the solutions considered in the present paper may be extended
to include the case of localized modes in driven damped lattices, provided the mode frequency and
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amplitude are fixed by the parameters of the external parametric ac force.

PACS number(s): 03.40.Kf, 63.20.Pw, 46.10.+z, 63.20.Ry

I. INTRODUCTION

As is well known, models describing microscopic phe-
nomena in solids are inherently discrete, and discrete-
ness effects may drastically modify the nonlinear dynam-
ics and properties of spatially localized modes (see, e.g.,
some examples in Refs. [1-8]). For excitations that vary
slowly on the scale of the lattice spacing, one can approx-
imate discrete models by continuum partial differential
equations, obtaining analytical solutions which are close
to the phenomena observed in original discrete (but of-
ten analytically intractable) models. The well-known ex-
ample is lattice solitons which in some particular cases
are described by the Korteweg-de Vries equation for rel-
ative particle displacements or the nonlinear Schrodinger
(NLS) equation for the carrier wave envelope (see, e.g.,
Ref. [3]). In the former case, a more rigorous approach
(which takes into account effects of discreteness) allows
the determination of the soliton velocity with a higher
accuracy than from the continuous approximation, but
it does not greatly alter the conditions for the soliton
existence and propagation [9,10]. In the latter case, dis-
creteness of the primary chain may be partially tractable
through the discrete carrier wave (when taken as an exact
traveling-wave solution of the lattice equations), assum-
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ing that due to nonlinearity the wave envelope is slowly
changing in time and space. As a result, it may be shown
that the slow variations of the envelope are described by
an effective NLS equation (see, e.g., Ref. [11] and ref-
erences therein). It is natural to name this type of en-
velope solitons solitons on a traveling carrier wave. On
the other hand, linear theory of wave propagation con-
siders also the so-called standing modes which appear as
a result of linear superposition of two counterpropagat-
ing waves, i.e., two waves with the same frequency but
opposite wave numbers. As a matter of fact, properties
of linear standing waves are ezactly the same as those of
linear traveling waves, and usually they do not attract
too much attention in the theory of wave propagation
in linear lattices. However, in the case of nonlinear lat-
tices these two types of waves, traveling and standing
waves, may drastically differ from each other. The inter-
est in the standing localized modes in nonlinear lattices
has been initiated particularly by the recent experimen-
tal observation of standing localized modes in a chain of
parametrically driven pendulums [12]. Indeed, applying
an external parametric force to a nonlinear chain, one
may excite two waves of the same frequency w (equal,
e.g., to a half of the frequency of the external force in
the case of the parametrically driven chain) but with op-
posite wave numbers, +ko, because in the typical case
of systems with a symmetric spectrum band the stan-
dard property w(—ko) = w(ko) means that at least two
wave numbers correspond to a single value of the wave
frequency w. As a result, standing nonlinear modes are
excited in a natural way and may be also supported by

3161 ©1994 The American Physical Society



3162

the external driving force in a lossy system. As fol-
lows from the present analysis, properties of standing
and traveling waves in nonlinear lattices differ drastically
because standing modes are created by two counterpropa-
gating waves which, as a matter of fact, strongly interact
through mutual nonlinearity-induced coupling.

Up to present time, standing localized modes in dis-
crete lattices have been not investigated analytically in
detail. We would like to mention, however, that the
nonlinear theory of standing localized modes in the con-
tinuous approximation has been recently considered in
Refs. [12,13], the simplest bright and dark solitons for
discrete lattices have been presented in Ref. [14], and
the theory of standing waves corresponding to the so-
called wavelength-four modes has been proposed in Refs.
[15,16]. The purpose of this paper is to present the theory
of standing localized modes in nonlinear lattices which,
first, takes into account the effects produced by lattice
discreteness of the model and, second, covers all the par-
ticular cases analyzed up to now. One of the main fea-
tures observed in nonlinear lattices, i.e., the dependence
of modulational instability on the wave number of the
carrier wave, should also be taken into account by such
a theory because this effect certainly leads to a change
of properties of localized modes in the lattice. For exam-
ple, depending on the wave number of the carrier wave
nonlinear modes may be spatially localized or they may
exist as kink-profile structures on a modulationally stable
(standing) background wave. To describe the main prop-
erties of nonlinear standing modes in discrete lattices, in
the present paper we consider, as a typical example, a
simple model describing a chain of particles subjected to
cubic and quartic nonlinear (on-site) potential and, using
an approximation based on the discrete NLS equation, we
show that the standing nonlinear modes are described by
a system of two coupled equations. We present different
families of localized solutions to these equations including
the case of the so-called self-induced gap solitons previ-
ously analyzed in Refs. [15,16]. We believe the results
obtained will allow a deeper insight to be gained into the
properties of a variety of nonlinear localized modes ob-
served experimentally in a parametrically driven chain
of pendulums [12] as well as to demonstrate the general
features and properties of standing localized modes in
discrete lattices.

The paper is organized as follows. In Sec. II we present
our model which may be reduced to the discrete NLS
equation in the case when the interparticle coupling in
the chain is weak. We also briefly discuss modulational
instability for discrete lattices and the well-known case of
envelope (bright and dark) solitons on a traveling carrier
wave to make a subsequent comparison with the theory of
standing localized modes. In Sec. III we derive the sys-
tem of two coupled NLS type equations that describes
properties of standing localized modes in the case when
the envelopes of two counterpropagating waves, which
form a standing mode, are slowly varying on the scale
of the inverse wave number of the carrier wave. As we
show in Sec. IV, the equations proposed in the paper also
cover the recently analyzed case of the wavelength-four
modes. In fact, by a simple transformation we reduce the
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two coupled NLS equations into the system of equations
derived earlier by Kivshar [15,16] using a completely dif-
ferent approach. The case when the carrier wave num-
ber is far from the zero-dispersion point and from the
edges of the Brillouin zone is analyzed in Sec. V where
we demonstrate that the resulting system of the coupled
NLS equations displays a family of more general localized
solutions which are found numerically. Some extensions
of the theory to cover the case of parametrically driven
damped nonlinear chains are briefly discussed in Sec. VI.
At last, Sec. VII concludes the paper with a general dis-
cussion of the results and a brief summary of the open
problems.

II. MODEL

We consider the dynamics of a one-dimensional chain
of atoms with the mass m, harmonically coupled to their
neighbors, and subjected to a cubic and quartic external
nonlinear (on-site) potential. Denoting by u,(t) the dis-
placement of atom n, its equation of motion is written in
the form

d?u,
m
dt?

— ko (tny1 + Un_1 — 2un)

+mw(2,u,, + aui + dufl =0, (1)

where k; is the coupling constant characterizing a
strength of the interparticle forces, wq is the frequency
of small-amplitude vibrations in a well of the substrate
potential, « and (3 are the anharmonicity parameters
of the on-site potential. Linear waves in the lattice
are characterized by the frequency spectrum w(q) which
has a gap wp and is limited by the cutoff frequency
Wmax = (w& + 4k2/m)'/? due to discreteness.

Analyzing slow temporal variations of the wave enve-
lope, we try to retain in full the discreteness of the pri-
mary model. This is possible indeed under the condition
mw? > 4k, i.e., when a (linear) coupling force between
the particles is weak. Looking for the solution in the form

Uy = ¢'n + f(/)ne“i“’ot + 6n6—2iuut 4 4o (2)

where c.c. stands for the complex conjugate terms, and
keeping only the lowest order terms in rapidly varying
oscillations (see details of the corresponding justification
in Ref. [17]), we obtain the nonlinear equation for ¢,,.

. dpn
2zw0m~;/)£~ + k2 (Yny1 + Y1 — 295)

—2a — (d)nwn + d’;{n) - 3ﬁ|'¢’n|2wn =0, (J)
and two algebraic relations for ¢, and &,,

2c 2 a o \
n X ——|Pn|®, n Y. 4)
¢ wgw’ [ 3@3‘”’ (
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The results (3) and (4) are generalizations of the well-
known results for the continuum case (see, e.g., Ref. [11]).
Thus, the final discrete NLS equation stands

"% + K (Ynt1 + Yno1 — 20n) + A|ton|?¥n = 0, (5)

where

K = ky/2muwo, ,\——1_(&“2—3;3). (6)

2mwy \ 3w?

Equation (5) is used below to analyze different types of
localized modes in the chain.

As is well known, nonlinear systems may exhibit an
instability that leads to a growth of self-induced mod-
ulations of the continuous-wave (cw) mode as a result
of an interplay between nonlinear and dispersive effects,
and it is also responsible for energy localization and the
formation of localized pulses. For the discrete NLS equa-
tion (5), derived in the single-frequency approximation,
modulational instability was analyzed by Kivshar and
Peyrard [7]. Contrary to what would be found in the
continuum limit, the stability criterion depends on the
carrier wave number ¢, and this property is very com-
mon for different discrete models (see, e.g., Ref. [18]).
The region of instability appears only if

A cos(ga) > 0. )

For positive A and a given ¢, a plane wave will be unstable
in the region ¢ < 7/2a and stable otherwise [7].

The standard case which has been analyzed in the liter-
ature for various nonlinear models is the so-called solitons
on a traveling carrier wave that arises when a carrier wave
supporting solitons is treated in the so-called discrete-
carrier-wave approzimation. To make such an analysis
for the model (5), let us derive the effective nonlinear
equation which describes nonlinearity-induced modula-
tions of the wave envelope which is, according to the
results of the previous section, modulationally unstable
provided the condition (7) holds. We are looking for a
solution of Eq. (5) in the form

Yn(t) = ¥(n,t) exp(igna — iwt), (8)

where for small nonlinearities it is assumed that the wave
number ¢ and frequency w are connected by the lnear
dispersion relation w = 4K sin®(ga/2). Substituting Eq.
(8) into Eq. (5) and keeping only the first three terms of
the Taylor expansion of the functions ¥(n + 1, t) (which
are assumed to be slowly varying), we come to the equa-
tion
.00 ov 9%

97 v 2= oF 2q
igy tiVag T AT + AP =0, (9)

where

V, = = 2aK sin(qa) (10)

&

is the group velocity of linear waves in the lattice NLS
equation (5), and the parameter

2w

i = a®K cos(qa) (11)

SH

A

describes the group-velocity dispersion of linear waves.
Equation (9) is the standard continuous NLS equation
which describes modulations of the wave envelope in the
reference frame moving at the group velocity Vy,. We
refer to the solitons described by this equation as solitons
on a traveling carrier wave. We would like to mention
again that such an approach is commonly used to analyze
nonlinear waves in different lattice models of solids (see,
e.g., Refs. [3,11] to cite a few). In that case the properties
of the carrier wave already include discreteness of the
primary model, because the wave number of the carrier
wave is assumed to be taken within the whole region of
the Brillouin zone, 0 < ¢ < 7/a.

The NLS equation (9) is exactly integrable and its lo-
calized soliton solutions are well known: they are bright
solitons for AA > 0 and dark solitons, i.e., solitons on
a modulationally stable background, for AA < 0. The
main property of such localized solutions is the following:
They exist as localized structures of a traveling carrier
wave, and therefore they are characterized by the group
velocity V. We would like to note, however, that this
approach allows also the description of the two simplest
classes of standing localized structures when the wave
number g approaches the edges of the Brillouin zone (0
or m/a), where the group velocity V, vanishes. In the for-
mer case, i.e., ¢ = 0, the envelope ¥(n,t) describes slow
variations of the field v, itself, and in the latter case,
the function ¥(n,t) describes an envelope of the out-of-
phase vibrations in the lattice, ¥, (t) = (—1)"¥(n,t),
where ¥(n,t) is a solution of Eq. (9) at V, = 0.

III. COUPLED-MODE EQUATIONS

To describe nonlinear modulations of the standing car-
rier wave, we look for solutions of Eq. (5) in the form,

Yn = Uy(n,t)e' 4+ Uy(n,t)e?-, (12)
where
0+ = —iwt + igna, (13)

and assume that the envelope functions ¥, and ¥, of
two counterpropagating waves vary slowly in space and
time.

The physical motivation for analyzing the interaction
of two counterpropagating waves of the same frequency
but opposite wave numbers is the following: let us con-
sider an external (parametric or direct) driving force of
the frequency w, which is selected within the spectrum
band of the lattice. Such a force, being applied to the lat-
tice, excites lattice oscillations at the frequency w,, for a
direct force, or at w,/2, for a parametric force. If the lin-
ear spectrum band w(k) is symmetric, i.e., w(—k) = w(k),
this force generates two waves with the wave numbers ko
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and —ko (see Fig. 1), which may form a standing local-
ized mode through nonlinear interaction of two traveling
modes propagating with two opposite group velocities
+Vg (ko).

Substituting Egs. (12) and (13) into Eq. (5) and com-
bining the terms proportional to exp(if4) or exp(:6_),
we obtain the system of two coupled NLS equations,

.0 ., 0 o?
25\1/1 + ZVQEE\IH + Aw‘yl

FA(| P12 + 2|V T, + VITTe 4?) =0, (14)

.0 ., 0 o2
15‘1/2 - nggi‘l’z + A@‘I’z

+/\("I’2l2\p2 + ZI‘Pllz‘I’z -+ \I;fq,;eﬁqna) = O7 (15)

where V; and A are defined in Egs. (10) and (11) and
in the derivatives written above the variable z =~ na is
treated as continuous. We keep, however, the explicit
phase in the last terms in Eqgs. (14) and (15) to make
the subsequent analysis more clear. The accuracy of the
derivation of Egs. (14) and (15) is exactly the same as for
Eq. (9), in the latter case the full form of the asymptotic
expansion has been discussed earlier (see, e.g., Ref. [11]).
However, we would like to note that we did not make
any additional assumption to derive the system of the
coupled NLS equations (14), (15) from the discrete NLS
equation (5) except that of slowly varying envelopes of
two counterpropagating waves, this allows the omission
of all higher-order derivatives in the corresponding Taylor
series.

The system similar to that given by Eqs. (14) and (15)
is known in nonlinear optics, e.g., in the theory of the
so-called nonlinear birefringent fibers, and it describes
the coherent and incoherent interaction of two optical
polarizations in Kerr media when the phase and group
velocities of two polarization components differ due to
the effect of birefringence [19]. As has been mentioned
in Ref. [19], for the case of optical solitons in birefrin-
gent fibers, the terms which have oscillating multipliers

-T/a -k, 0 K,

FIG. 1. Eigenfrequency spectrum of linear waves in the
chain (1). If an external force with the frequency w. is applied
to the lattice, it excites two traveling waves with the wave
numbers +ko which may form a standing nonlinear mode.
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~ exp(+4igr) may be neglected because, according to
Ref. [19], for realistic physical parameters they are al-
ways rapidly oscillating. In this latter case, the system
(14), (15) possesses vector soliton solutions. For exam-
ple, for A > 0 the soliton solutions were found to be of
the form [19]

A CiAth l‘ttlz lVg o
\Ill,z(x,t) = EM exp ’Et T é’Z‘L’ . (lb)

where B2 = (30/2A)A?% and A is the soliton amplitude.
The two solitons (16) have a phase shift which is induced
by the nonzero group velocity, and this shift compen-
sates exactly the so-called “walk-off” effect between the
two polarization modes. As was shown numerically [19]
and analytically [20], nonlinearity may stabilize the par-
tial solitons against both spreading due to dispersion and
splitting due to difference in their group velocities. Above
a certain threshold amplitude, the fractional pulses in
each of the two polarization modes trap each other and
move together as one vector object.

In the case of nonlinear lattices, the wave number ¢
is selected within the Brillouin zone (0 < ¢ < 7/a), so
that the assumption that the terms containing oscillat-
ing multipliers are small is not valid in the vicinity of
the zero-dispersion point ¢ = 7/2a. Thus, we should an-
alyze Eqgs. (14) and (15) in a more general form. As
is shown below, this is very important in describing the
so-called self-induced gap solitons corresponding to the
wavelength-four carrier wave.

IV. WAVELENGTH-FOUR MODES

In the case when the carrier wave is selected as a
wavelength-four mode of the linear spectrum, ¢ = 7/2a,
we have €™ = 1, so that all nonlinear terms in Eqgs.
(14) and (15) are important. In this case, the system of
Egs. (14) and (15) takes the form

.0 ., 0
7/8;‘1,1 +ZV()5;\I’1
AT 2T + 2|02, + W2TT) =0, (17)
.0 0
1&‘1’2 —lVO—a—;‘I’z

(T2 T, + 2| T, 2T, + U2P3) =0, (18)

where A(7/2) = 0 and Vo = Vy(7/2) are the values of the
second-order dispersion and group velocity calculated at
q = 7/2a, and A vanishes at that point. Let us now use
the transformations

‘I’LQ - (’U + zw) (19)

1
2
As a matter of fact, the new functions v and w introduced
above describe slowly varying envelopes of two different
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groups of particles in a lattice, odd and even particles
[15,16]. It is easy to verify that the combinations of the
nonlinear terms in Egs. (17) and (18) are transformed to

be

I‘I’1|2‘I’1 + 2“1’2'2\1’1 + ‘I’g‘l’; = l’Ulz’U + ‘l:l’ll)lz’w, (20)

|W2|* @5 + 2|01 |2 T2 + V3] = [o]?0 — ifw[*w.  (21)

Therefore, the system of the coupled NLS equations (17),
(18) for the functions w and v takes the form

.Ov ow N
’LE —_ V()-g:; + Al’U‘ v = O, (22)
Ow v 2

Looking for the spectrum of the cw solutions to this
nonlinear system, we find the result

(@ = Wp) (@ — Awg) = Vi'g?, (24)

where @ and § are the frequency and wave number of the
cw solutions of two modes with the amplitudes wp and
vg, respectively. The dispersion relation (24) exhibits a
nonlinearity-induced gap in the cw spectrum and this gap
is proportional to the difference in the amplitudes of odd
and even particle oscillations,

6@ = Avd — wil. (25)

As has been discussed in Refs. [15,16], the gap in the non-
linear spectrum may be a factor of the wave localization
at ¢ = m/2a provided the nonlinearity is large enough.
However, this kind of localized structure has to differ
drastically from the standard spatially localized modes
in nonlinear models. Indeed, both the wave field compo-
nents cannot vanish in the same direction because there
is no gap in the linear spectrum and small-amplitude os-
cillations at that frequency will be delocalized.

Analyzing this kind of localized structures, we follow
Refs. [15,16] and look for stationary solutions of Eqs. (22)
and (23) in the form

(v,w) o (f1, f2)e™. (26)

The stationary solutions are described by the system of
two ordinary differential equations of the first order,

d
N ipast, (27)
RSy (28)

where z = z/V,. Equations (27), (28) describe the dy-
namics of a Hamiltonian system with one degree of free-
dom and the conserved energy,

B = Sn(f2+ ) - AU+ 1), (29)
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and they may be integrated with the help of the auxiliary
function g = (f1/f2), for which the following equation is
valid,

(%)2 =r3(1+¢%%-4E(1+¢%). (30)

Different kinds of solutions of Eq. (30) are characterized
by different values of the energy E. On the phase plane
(f1, f2) (see Fig. 2) soliton solutions correspond to the
separatrix curves connecting a pair of the neighboring
saddle points (0, fo), (0, —fo), (fo,0), or (—fo,0), where
f& = k/). Calculating the value of E for these separatrix
solutions, E = k2/4J, it is possible to integrate Eq. (30)
in elementary functions and to find the explicit form of
localized solutions,

9(z) = exp(£V2kz), (31)

keFV2r2[2 cosh(v/2kz) £ V2]

=
2\ cosh(2\/§nz)

) fl = gfz' (32)

The solutions (31) and (32), but for negative &, exist also
for defocusing nonlinearity when A < 0.

The results (31), (32) give the shapes of the localized
modes in the discrete nonlinear lattice. Because all com-
binations of the signs are possible in Eq. (32), there are
four solutions of this type and two of them are presented
in Figs. 3(a) and 3(b) (the other two modes are obtained
by a trivial change of the sign). The resulting localized
structure represents two kinks in the two oscillating lat-
tice modes which are composed of the opposite [see Fig.
3(a)] or the same [see Fig. 3(b)] polarities, so that both of
them cannot be localized in one direction. This is a direct
consequence of the nonlinearity-induced gap (25) in the
cw spectrum (24), and this gap disappears in the linear
limit (see more detailed discussion of the nonlinearity-
induced gap in Ref. [16]).

The existence of the nonlinearity-induced gap explains
why at the point ¢ = 7/2a, where the second-order dis-
persion term exactly vanishes, we may neglect the third-

FIG. 2. Phase plane of the system (27) and (28). The
separatrix curves connect pairs of four saddle points (0, fo),

(fO,O), (07 _fo)’ and (‘f0,0)~
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FIG. 3. Kink-type localized modes corresponding to the
separatrix curves shown in Fig. 2. The solutions are given by
Egs. (31) and (32).

order terms 93V, /0z® and 83¥,/0z° in Egs. (17) and
(18), respectively. Indeed, for the linearized version of
Egs. (17), (18) the linear spectrum has no dispersion but
nonlinearity can produce an effective dispersion opening
the nonlinear gap in the spectrum of the cw solutions as is
shown in Eq. (25). This means that in the nonlinear case
when two components are nonlinearly coupled, the first-
order derivative terms in Eqgs. (17), (18) will define the
parameters of localized solutions and a contribution of
the third-order terms will be negligible, provided the con-
tinuum approximation is valid, i.e., for a? < L?, where L
is the characteristic scale of the localized mode (31), (32)
which is L = V/k. This case is different from the one-
component NLS equation (9) briefly discussed in Sec. II.
At the point ¢ = 7/2a, where the second-order derivative
term vanishes, the first-order derivative cannot compen-
sate for nonlinearity (this is simply the group-velocity
term) and localized solutions may appear only due to the
effect of the third-order dispersion which itself defines a
spatial extension of localized modes (see, e.g., as an ex-
ample, the case of the zero-dispersion point in the context
of nonlinear optical fibers [21]). From the viewpoint of
the nonlinear gap discussed above, for a traveling wave
of a single NLS equation the only effect of nonlinearity
is to shift the wave frequency but do not open a gap, so
that in this case the effective contribution of dispersion
must be taken as a higher-order term.

V. GENERAL CASE
A. Basic equations

Let us now describe a more general situation (¢ #
7/2a) when the frequency of the carrier wave does not
correspond to the zero-dispersion point. This time the
terms in Eqs. (14) and (15) containing multipliers
exp(+4igna) are rapidly oscillating, and they may now
be omitted. Making the transformation
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1 A% iV,
Uypo=-—® -2 t+ -8 33
1,2 \/X 1,2 €Xp < 4|Ai 2|Al‘r> ( )

and renormalizing the variable, + — x\/|A[. we reduce
the system (14), (15) to the following one,

KoL TRl 31 2 oid. 2 -
T (e 2 <0 )
oe, e,

+ (|®2]* + 2(®1[%) @2

I
=

i 0——

ot oz?
where o = sign(AA). We postulate the existence of spa-
tially localized modes in which both counterpropagating
components have the same frequency. We then look for
stationary solutions in the form

4)1 - (bl(l_)edit‘ q)2 — d)g(l?)(’l“fﬂ (36

where the envelopes ¢; and ¢, are assumed to be real
functions. Substituting Eq. (36) into Egs. (34) and (35)
leads to the system of two coupled ordinary differential
equations.

d*¢ TRy .
-z = QP — ¢ — 205¢1. (37)
&2 . .

U*&% = Qs — ¢5 — 2070 (38)

In a mechanical analog picture Eqgs. (37) and (38) are
the motion equations of a unit-mass particle on the planc
(¢1,¢2) in the effective potential

o [ 1 . 1 Y
V(g1,62) = 7 | =58 +¢3) + (01 +03) + 9103
{39)
The bound solitary-wave solutions are then given by the
separatrix trajectories on this potential [22]. The disper-
sion coefficient o determines the properties of the poten-
tial extrema, i.e., maxima, minima, and saddle points.
Since the separatrices are the trajectories which connect
such points, we have to consider the cases of positive
(¢ = +1) and negative (¢ = —1) dispersion separately.

B. Positive dispersion

In the case where ¢ = 41, the potential V(¢1,¢2)
possesses a unique maximum at the origin surrounded by
a valley in which there are four minima of the axes, ¢; =
0 and ¢ = 0. The separatrices are then the trajectories
which start and end at the origin.

Being symmetric with respect to the axes ¢; = 0.
¢2 = 0, the potential possesses simple straight line sepa-
ratrices along these axes. Substituting ¢, = 0 (or ¢; = 0)
in Eq. (37) [or Eq. (38)], we find the corresponding sim-
plest separatrix solutions which correspond to soliton-
wave envelopes,

o) = V22w =0 (40)

kosh(\/ﬁ )’
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or

V2Q
cosh(vQzx)’

These solutions represent the case when the amplitude of
one of the counterpropagating modes vanishes, and the
soliton solution is an envelope of a traveling carrier wave
only, as it was discussed in Sec. 1I.C.

Analyzing solutions of a more general type, we note
that between the minima, the potential V(¢1,¢2) ex-
hibits four saddle points on the bisecting lines ¢; = 5.
Being axially symmetric with respect to these lines, the
potential also exhibits separatrices along them. Setting
¢1 = £¢2 in Egs. (37) and (38), we easily find the cor-
responding solitary-wave solutions,

$1(z) =0, ¢a(z) = (41)

2Q/3
cosh(v/Qz)

These solutions are nothing but the composite (standing
carrier wave) solitons mentioned in Sec. III and expressed
here in dimensionless units. Such solitons describe mu-
tual trapping of two envelope solitons belonging to dif-
ferent counterpropagating modes of lattice vibrations.

By means of the standard shooting technique applied
to Egs. (37) and (38), we have investigated numerically
the existence of other separatrix curves on the poten-
tial V(¢1, ¢2). Two kinds of numerically found trajecto-
ries were identified: The trajectories which form closed
loops being axially symmetric with respect to the bisect-
ing lines ¢; = * 2, and the trajectories which fold back
upon themselves showing no particular symmetry.

Two examples of such separatrices belonging to both
these families are shown in Figs. 4(a) and 4(b) together
with the corresponding solitary-wave envelopes. The first
are characterized by having an odd number of zeroes of

$1=E¢2 = (42)

o (a)

¢1’¢2A

FIG. 4. Examples of the separatrix curves for the potential
V(é1, #2) (left column) and the corresponding solitary wave
envelopes (right column). The case (a) presents the family
of the solutions corresponding to symmetric separatrices, and
the case (b)—solutions with no special symmetry of the cor-
responding separatrices.
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the envelopes of both components whereas the envelopes
of the second family exhibit even numbers of zeroes.
These results show that the mutual nonlinear trapping of
counterpropagating waves in nonlinear lattices may lead
to complex localized structures which have no simple ana-
log in the theory of traveling waves. Of course, different
solutions of these two families have different energies, so
that for the driven damped lattices it is probable that
only the lowest-order mode may be observable. These
questions will be addressed in our future work.

C. Negative dispersion

1. Eztended modulational instability

The case of the negative dispersion is of particular in-
terest here. In the presence of only one carrier wave, i.e.,
¢1 =0 or ¢, = 0, Egs. (34) and (35) reduce to the single
NLS equation which is modulationally stable provided
o = —1. However, when two counterpropagating waves
are present, there is an incoherent coupling between them
which is characterized by a cross-phase modulation twice
as large as the self-phase modulation. Since the early
work of Berkhoer and Zakharov [23], modulational insta-
bility in systems with incoherently coupled NLS equa-
tions has attracted much attention. In the context of
the results of Ref. [23], incoherent coupling represents
the process of cross-phase modulation between the two
polarization components of a transverse electromagnetic
wave propagating in a Kerr-type medium. Berkhoer and
Zakharov showed, in particular, that cross-phase modu-
lation is responsible for the onset of modulational insta-
bility in the negative dispersion regime. In other words,
they showed that incoherent coupling between two NLS
equations leads to an extension of modulational insta-
bility to the parameter domains in which both waves in
separation are modulationally stable. Incoherent cou-
pling and extended modulational instability occur in a
variety of different physical contexts and, in particular,
in plasma physics and nonlinear optics, for example, in
the propagation of transverse electromagnetic waves in
cold plasmas [23,24], in the interaction between Lang-
muir and jon-acoustic waves [25], in the propagation of
light in magneto-optically active media [26] or nonlinear
dielectrics [27].

The phenomenon of extended modulational instability
has been recently reconsidered by Haelterman and Shep-
pard [28]. They showed, in particular, that extended
modulational instability is associated with the existence
of solitary waves of dark-profile type in the same way
as modulational instability in the single NLS equation
is associated with the bright envelope solitons (see, e.g.,
Ref. [29]). The link between the extended modulational
instability and this type of solitary wave is established
as follows: The dynamics of the extended modulational
instability and the corresponding family of space- and
time-periodic solutions are studied using the approximate
three-wave model for the coupled NLS equations. This
analysis reveals the existence of stationary periodic so-
lutions analogous to the cnoidal wave solutions of the
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single NLS equation. By means of numerical study of
the coupled NLS equations it was shown that these par-
ticular solutions tend to a solitary wave as their period
is increased to infinity, exactly as the cnoidal waves tend
to the bright soliton in the case of the single NLS equa-
tion [29]. On the basis of this reasoning the dark solitary
wave can be viewed as the solitons associated with the
extended modulational instability [28].

This theory applies here to the counterpropagating
waves in nonlinear lattices. As a matter of fact, two
such waves are modulationally unstable in a lattice when
they propagate together and they can form a stable kink
type standing wave, or dark-profile soliton. which in-
volves both counterpropagating modes.

2. Composite kink modes

In the negative dispersion regime (0 = —1) the poten-
tial V(¢1, p2) possesses four maxima on the axes ¢ = 0
and ¢ = 0, and the origin is now a minimum. The

separatrices are then trajectories which connect pairs of
maxima. Due to the axial symmetry of the potential.
the separatrices connecting pairs of opposite maxima are
straight lines along the axes (see Fig. 5, dashed lines) and
they may be easily found analytically. Setting ¢ = 0 (or
¢1 = 0) in Egs. (37) and (38), we find

¢1 = VQtanh(\/Q/2z), ¢2 = 0. (43)
or
$1 =0, ¢ = VQtanh(\/Q/2z). (44)

These are the usual fundamental dark solitons to the sin-
gle NLS equation described in Sec. IIC.

Obviously, as in the case of positive dispersion the po-
tential is symmetric with respect to the bisecting lines
¢1 = £¢2 on which it possesses saddle points (see Fig.
5, dotted lines). The trajectories connecting these saddle
points are also separatrices of the potential V. The cor-

FIG. 5. Contour plot of the potential V(¢1, ¢2) and three
types of the separatrix curves (shown by solid, dashed, and
dotted lines) connecting adjacent extrema (maxima or saddle)
points.
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responding solitary waves are easily calculated from Egs.
(37) and (38) when setting ¢; = £¢,. We obtain

b1 = +py = 1/Q/3tanh(\/Q/2z). (45

These composite kink solitons represent mutually
trapped dark solitons belonging to different counterprop-
agating modes of lattice vibrations. This situation is
analogous to that obtained with bright solitons in the
positive dispersion regime.

Of special interest here are the separatrices which con-
nect adjacent maxima (see Fig. 5. solid lines). Such
separatrices are characteristic of the topology of the po-
tential ¥V with ¢ = —1 and they have no counterpart
in the case of positive dispersion. Because Eqs. (37)
and (38) are nonintegrable, we calculate these trajecto-
ries numerically by means of a shooting technique. The
corresponding solutions are shown in Figs. 6(a) and 6(b)
for two kinds of the separatrix solutions: corresponding
to the first and second quadrant [i.e.. ¢1.¢2 > 0. for Fig.
6(a), and ¢ < 0, ¢2 > 0, for Fig. 6(b)]. The composite
dark solitons consist of two symmetric (antisymmetric)
semi-infinite kinks belonging to the two counterpropa-
gating modes of lattice vibrations. These solutions are
remarkably similar to the self-induced gap solitons of the
wavelength-four modes found analytically in Sec. IV and
shown in Figs. 3(a) and 3(b). As a matter of fact, both
these solutions are particular cases of more general kink-
type solutions of the coupled equations (14) and (15)
which include both the first- and second-order deriva-
tives. This simply means that we may also treat the
solutions presented in Figs. 6(a) and 6(b) as self-induced
gap solitons when one of the counterpropagating modes
creates an effective periodic potential to the other mode
and then it localizes the counterpropagating oscillations
as has been explained for the case of the wavelength-four

(a)

¢17¢2

1;

0.5

5 0

(b) 00

5 0/5 X
-0.5
|

FIG. 6. Solitary-wave envelopes corresponding to two sep-
aratrices shown by solid lines in Fig. 5: (a) ¢1,¢2 > 0, (b)
¢ < 0. ¢p2 > 0. Note the similarity between these solutions
and those presented in Figs. 3(a) and 3(b).
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modes. In the case considered in Sec. IV, however, the
physical interpretation is more straightforward because
these two modes in the lattice may be connected in a
simple manner with vibrations of odd and even particle.
This shows directly how the effective periodic potential is
created by the second counterprogating mode: it is pro-
duced by vibrations of the other (odd or even) group of
particles in the lattice.

VI. PARAMETRICALLY DRIVEN DAMPED
LATTICES

The nonlinear standing modes analyzed above corre-
spond to the case of undriven and undamped oscillations.
However, a realistic physical model includes damping
which may be compensated by applying a (direct or para-
metric) external force. Turning now to possible physical
realizations of the standing nonlinear modes, we refer to
the recent experiments with the driven damped chain of
nonlinear pendulums [12] which may be described by the
equation

du, 2 .
mW - kz(un+1 + Up—1 — 211,") + mwq sinuy,
dun,
= F cos(2w,t) sinu,, — —;t— (46)

In the absence of the right-hand side, Eq. (46) is a par-
ticular form of Eq. (1) at @ = 0 and 8 = mw?/6 pro-
vided we expand sin(u,) in the Taylor series, sin(u,) =~
up — (1/6)ul.

If the force (~ F') and damping (~ <) are small, we
may try to find the condition for stabilization of the
damping of the nonlinear modes by the parametric driv-
ing force. In the case of breather solitons (the simplest
spatially localized modes) such a problem was first con-
sidered in Ref. [30] (see also more recent studies in Refs.
[31,32] where chaotic regimes were described as well). To
analyze nonlinear localized modes in the driven damped
chain, we look for forced solutions of Eq. (46) in the
form,

Un(t) = fn cos(wet + O), (47)

and keep only two lowest-order terms in the Taylor series.
Using the so-called rotating-wave approximation we take
into account only the first harmonic in Eq. (46) and ob-
tain the equation for the real function f,, which describes
the wave envelope,

[m(w§ — w?) = (F/2) cos(2¢)] fx

3
= k2(fn+1 + fn—l - 2fn) + Zﬁfg» (48)
where the phase shift © is given by the relation

2ywe

sin(20) = ya

(49)

Equation (48) is useful to investigate forced oscillations
of localized modes on a standing carrier wave with the
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wave number g in the lattice. The cases ¢ = 0 (paramet-
ric stabilization of a breather) and ¢ = 7/a (parametric
stabilization of a cutoff kink) have been analyzed earlier
in Refs. [30] and [13], respectively. As a matter of fact,
a general case of an arbitrary ¢ can be reduced to the
system (37) and (38) under special assumptions. Here,
however, we will briefly analyze the case of ¢ = m/2a
which is characterized by the exact solutions in the form
(31) and (32).

Following Sec. IV, we reduce Eq. (48) for the envelopes
of the two counterpropagating waves ¥; and ¥, to a
system of two equations for the functions w and v [see Eq.
(19)] describing, respectively, the amplitudes of odd and
even particle oscillations. Assuming that the functions w
and v are time independent (certainly realized for steady-
state forced oscillations), we finally come to the system
(27), (28) where this time the parameters x and A are
determined by the relations

K= |mwd — w2) — 2k, — %Fcos(?@) . (50)

A= (3/4)8. (51)

Thus, we come naturally to the conclusion that standing
localized modes in this case are described by the same
solutions (31) and (32) with the parameters fixed by the
amplitude and frequency of the parametric driving force.
In particular, the steady-state amplitude fo of the kink
solitons is given by the formula

2= 2 | m(w? - w?) - 2k — LFcos(20)|,  (52)
34 2

where the phase shift © has to be found from Eq. (49).

As a matter of fact, this type of localized modes was

observed experimentally in a damped and parametrically

driven chain of pendulums [12].

The results displayed above are, in fact, based on the
approximation of the NLS equation. However, numeri-
cal analysis of the simplest case of the spatially localized
(breather) modes shows that such an approximation is
valid, however, for rather small amplitudes of the driv-
ing force F' only. For very large values of the amplitude
F the forced oscillations may become much more com-
plicated, displaying period doubling sequences and chaos
[32]. This kind of scenario may be qualitatively expected
for the other types of localized solutions, in particular
those analyzed here, and more detailed analytical and
numerical studies will be presented elsewhere.

VII. CONCLUSIONS

In conclusion, taking the well-known model of a chain
with nonlinear (cubic and quartic) on-site potential and
using the approximation based on the discrete nonlinear
Schrodinger equation, we have developed the theory of
standing localized modes in discrete lattices. We have
shown that this kind of localized mode is described by
a system of two coupled NLS equations with nonlinear
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coupling terms of three different kinds, and this system
seems to cover all the particular cases known up to now.
It displays also types of localized solutions that have no
simple analog in the theory of solitons on a traveling
carrier wave. In particular, our model includes, as a par-
ticular case, the so-called self-induced gap solitons, and
it displays also a richer class of the similar solutions de-
scribing domain walls of lattice vibrations.

In the present paper, we have used the approximation
of slowly varying envelopes which reduces to partial dif-
ferential equations for the envelopes of two counterprop-
agating waves. When the discreteness effects become im-
portant (this is valid either for a weak coupling in the
lattice or for larger nonlinearities), the wave envelopes
cannot be described by equations of the continuous ap-
proximation, and we expect to observe a different kind
of physical phenomena. One of the discreteness-induced
effects is the existence of the so-called Peierls-Nabarro
effective periodic potential which simply means that the
energy of a localized mode depends on its position in
the lattice. In particular, recently it was shown analyti-
cally [33] and numerically [8] that the spatially localized
mode centered at a particle site is stable, whereas the
mode centered between the neighboring sites is unstable.
We also expect to observe this kind of effect for all the
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modes described here in the approximation of continuous
envelopes, including the case of dark-soliton modes and
self-induced gap solitons.

Finally, we would like to note that the model we pre-
sented here and the properties of its localized solutions
are quite general and are to be expected in other types of
discrete nonlinear lattices. For example, recently it was
proven theoretically and experimentally that nonlinear
localized traveling waves may propagate in an experi-
mental electrical transmission line made of N (N = 45)
nonlinear electric cells [34]. As a matter of fact, in the
case when the intensity of a reflected wave is not sup-
pressed (i.e., just the opposite to the case considered in
[34]), we may naturally expect a strong interaction of
two counterpropagating waves and creation of localized
modes similar to those described in the present paper.
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